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Abstract. A model of the crystal field generated by a periodic array of charged tapes is developed
to analyse the crystal-field interaction in RBa2Cu3Ox (R = Er, Ho) high-Tc copper oxides observed
by the inelastic neutron scattering technique. The explicit calculation of the parameters of the
Stevens Hamiltonian describing crystalline electric field effects in solids is performed for a specific
charge density distribution uniformly extended in a certain direction of the crystal lattice. The
model accounts for thex-dependence of the crystal-field parameters and allows us to determine
the hole concentration in the CuO2 planes as a function of oxygen stoichiometry. The model of the
periodic array of charged tapes suggests a charge order induced in the CuO2 planes by doping.

1. Introduction

Despite essential progress gained in understanding of the properties of copper oxide
superconductors since their discovery [1], basic features of the electronic states of these layered
compounds are still widely debated. Different scenarios [2–12] have been suggested to explain
the origin of the pseudogap [13–19] and, in general, the development of the electronic properties
across the phase diagram of cuprates. Inhomogeneous charge distribution resulting from
doping of antiferromagnetic parent compounds with charge carriers is of particular interest.
It has been theoretically shown that dilute holes in a layered antiferromagnet can be unstable
against phase separation into hole-rich and hole-poor regions at intermediate length scales
[2–7]. At the same time there is growing experimental evidence for mesoscopic striped phases
and their effect on the electronic properties in perovskite materials [20–29]. It is therefore
of crucial interest to obtain direct experimental information on charge distribution within the
superconducting CuO2 planes of high-Tc cuprates. Since in most rare-earth based high-Tc
compounds the R ions are situated close to the CuO2 planes, the crystalline electric field (CEF)
interaction at the R site constitutes an ideal probe of the local symmetry as well as the local
charge distribution, and thereby directly monitors the variation of the carrier concentration
induced by doping [30]. The inelastic neutron scattering technique (INS) is a valuable tool
to investigate the CEF excitations in optically opaque high-Tc compounds. This technique
allowed unique experimental information to be obtained on the peculiarities of the charge
transfer process and the cluster formation upon doping (which may be called ‘frustrated phase
separation’) as well as on the symmetry of the gap function of high-Tc superconductors [30–32].

† Corresponding author: Institute for Metal Physics, Russian Academy of Science, 18, S Kovalevskaya Street,
620219 Ekaterinburg GSP-170, Russia.
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In spite of these achievements a quantitative analysis of the doping dependence of the
crystal-field parameters for CEF spectra of rare-earth ions dissolved in high-temperature
superconductors remains unsatisfactory. This is due to the lack of better approaches for the
crystal-field effects in solids than those based on the point charge (PC) model.

In the present paper a new approach is developed to describe the variation of the CEF
parameters versus oxygen stoichiometery in high-temperature superconductors of the type
RBa2Cu3Ox (R = Er, Ho), so far the most studied by the INS technique from the point of view
of experimental completeness and precision. This approach is based on the consideration of
the periodic array of charge tapes induced in the CuO2 planes by hole doping. The explicit
calculation of the parameters of the crystal-field Hamiltonian (in the form of the Stevens
operator equivalents [33, 34]) is given for such an extended charge geometry. It is shown that
the model is able to explain the experimentally observed changes of the CEF parameters in
RBa2Cu3Ox (R = Er, Ho) and allows us to determine the hole concentration in the CuO2

planes as a function ofx. The formation of the periodic array of charged tapes provides
evidence for a charge order occurring in the CuO2 planes due to doping. However, this order
cannot directly be identified with charge stripes widely discussed from both theoretical [2–7]
and experimental sides [20–29].

2. CEF spectra in ErBa2Cu3Ox copper oxide

In ErBa2Cu3Ox the crystal field splits the ground-stateJ -multiplet 4I15/2 of the Er3+ ions
into eight Kramers doublets. Three CEF levels A, B, C were found in a low-energy window
(1E < 12 meV) and four levels D, E, F, G in a high-energy window (65< 1E < 82 meV)
[31]. The effect of increase in oxygen content is a shift of the CEF level A to higher energy and
increase of its intensity and a subtle shift of the levels F and G up and lines B, D and E down.
The energy of the transition C remains unchanged. Considering energies and relative intensities
of seven CEF transitions a set of nine CEF parametersBnm (n = 2, 4, 6;m = 0, 2, . . . , n) can
be derived for each oxygen concentration [31]. Figure 1(a) shows that parameterB20 varies
by a factor of two when going fromx = 6 to x = 7. The leading fourth- and sixth-order
parametersBnm (n = 4, 6;m = 0, 4) undergo rather small changes within a few percent. As
a result, the main features of thex-dependence of the CEF spectrum in ErBa2Cu3Ox , both
line energies and intensities, could be reproduced by the variation ofB20 alone keeping all the
other CEF parameters fixed. Figure 2 displays this behaviour in the low-energy window (for
more details see [30–32]). Increase inB20 corresponds to increase inx. Experimentally,B20

varies from 6.3 to 14 meV for 6< x < 7. Note, that for convenience here and below we use
the notations in which reduced matrix elements2n = 1, i.e.Bnm = Bnm(Stevens)/2n.

As demonstrated in detail for RBa2Cu3Ox [31, 35], the CEF interaction is mainly
determined by the position and the charges of the oxygen ions in the CuO2 planes. Respectively,
the variation of the leading fourth- and sixth-order CEF parameters can only be interpreted as
a result of an increase of the hole concentration in the CuO2 planes due to doping. In order to
quantify this result the following modified point-charge relation was suggested [31, 36]:

Bnm(x)/Bnm(7) = [1 + δ(x)]γnm(x)/γnm(7) (1)

whereδ(x) is the relative charge transferred from the chains to the planes (in units of the
electron charge|e|). The compound ErBa2Cu3O7 is taken as a reference, i.e.δ(7) = 0.
The geometrical coordination factorsγnm are calculated in the PC approximation [33] for the
nearest-neighbour oxygen polyhedron formed by the in-plane O(2) and O(3) ions. Oxygen
positions are assumed to be known from neutron diffraction measurements. Equation (1) gives
δ ≈ 0.28 holes/(unit cell) in RBa2Cu3Ox (R = Er, Ho) for x varying from 6 to 7 [31],



Crystal-field spectrum in RBa2Cu3Ox 7157

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

6 6.2 6.4 6.6 6.8 7 7.2

oxygen content

B
n P

(x
)/

B
n P

(6
)

%��

%��

%��

%��

%��

-0.2

0.2

0.6

1

6 6.2 6.4 6.6 6.8 7 7.2

oxygen content

[B
n P

(x
)-

B
n P

(6
)]

/[B
n P

(7
)-

B
n P

(6
)]

%��

%��

%��

%��

%��

%��

%��

%��

(a) (b)

Figure 1. (a) Relative variation of the leading CEF parameters as a function ofx for ErBa2Cu3Ox
derived from inelastic neutron scattering experiments [31]. (b) The same data plotted as normalized
increment of the CEF parameters versus oxygen content. ‘Orthorhombic’ parameters(m = 2, 6)
are also included.B44 is not shown because of large scattering of experimental points.

Figure 2. Numerical simulation of the CEF spectrum for ErBa2Cu3Ox as a function ofB20
parameter alone. All other CEF parameters are fixed at their values forx = 6.09 [31]. The plot
reproduces the main features of the observed behaviour. Experimentally,B20 varies from 6 to
14 meV forx going from 6 to 7.

i.e. very close to the generally accepted value of the hole concentration at optimal doping [37].
The second order parameterB20 cannot be described by such a simple relation despite the
fact that normalized increments of all the CEF parameters, both ‘tetragonal’ (m = 0, 4) and
‘orthorhombic’ (m = 2, 6), display the same trend (figure 2(b)). Such a behaviour suggests
that the actual doping-induced charge geometry in the CuO2 planes cannot be approximated
by point charges.
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Table 1. Calculated CEF parameters for ErBa2Cu3Ox . The algorithm takes into account corrections
for shielding by the outer shells [39] and screening due to charge carriers [40] (k = 0.73 Å) as
described in the text (see also [30]). Crystallographic parameters of the lattice forx = 6.98 and
6.09 as well as the observed values of the CEF parameters are taken from [31].Z[O(i)] is the
charge of the oxygen ions in the plane (i = 2, 3) and chain (i = 4) positions. The notation is used
in which reduced matrix elements2n = 1. Recalculation to the Stevens formalism is given by
Bnm(Stevens) = Bnm2n.

x = 6.98 x = 6.98 x = 6.09
Z[O(2)] = −2 Z[O(2)] = −1.92 Z[O(2)] = −2

x = 0.69 x = 6.98 Z[O(3)] = −2 Z[O(3)] = −1.92 Z[O(3)] = −2
(n,m) (observed) (observed) Z[O(4)] = −2 Z[O(4)] = −2 Z[O(4)] = 0

(2, 0) 6.30(22) 13.93(73) 15.4 15.3 16.9
(2, 2) 0 11.64(3.1) 12.4 11.9 0
(4.0) −33.61(11) −32.25(19) −29.0 −27.8 −29.1
(4, 2) 0 10.26(3.2) 9.73 9.36 0
(4.4) 156.31(66) 156.81(1.42) 157.7 152.0 158.4
(6, 0) 3.57(2) 3.67(6) 3.3 3.1 3.1
(6, 2) 0 −0.57(15) −2.3 −2.3 0
(6, 4) 104.47(11) 104.59(27) 103.4 99.9 103.2
(6, 6) 0 0.64(14) 1.2 1.2 0

Limitation to use the PC approximation for RBa2Cu3Ox does not result from the
consideration of the nearest-neighbour oxygen polyhedron. The CEF parameters for metallic
perovskites can be calculated using anab initio method suggested by Mesot and Furrer
[30]. In this method a finite cluster of the ErBa2Cu3O7 crystal is considered which includes
neighbouring ligand shells up to 10 Å out of Er3+ site. All ions within this sphere are taken
into account with their nominal charges. Following Sternheimer [38] and Morrison [39],
corrections for shielding effects are included. The screening effect due to charge carriers is
taken into account by a Yukawa-type potential [40]. Using the crystal structure parameters of
ErBa2Cu3O6.98 from [31] and by adjusting the screening lengthk = 0.73 Å, the CEF parameters
were calculated and found to be reasonably close to the experimental values (table 1). However,
this ab initio cluster calculation cannot reproduce thex-dependence of the CEF parameters,
especiallyB20. Variation of the charges of O(2) and O(3) ions in the CuO2 planes (replacing
Z[O(2),O(3)] = −2 byZ = −1.92, as follows from the estimated charge transfer in terms
of equation (1) [31]) causes a very small change of the CEF parameters (table 1). Similarly,
the observed variation of the CEF parameters withx cannot be described by removing oxygen
ions from the O(4) sites and by taking into account the corresponding structural variation.
In the frame of this cluster calculation the decrease inB20 for x going from 7 to 6 can only
be achieved by the decrease of the screening length. Obviously, such an assumption is not
acceptable. First, the screening length is expected to grow in an insulating state. Second,
an essential variation of the screening length required to decreaseB20 by a factor of two
will immediately change fourth- and sixth-order CEF parameters, in disagreement with the
experiment.

A certain restriction to use the PC approximation for the quantitative analysis of the CEF
effects in RBa2Cu3Ox follows directly from the INS experiment. A rather strong disorder,
introduced into Er-‘123’ by means of fast neutron irradiation at liquid nitrogen temperature has
been shown to result only in the broadening of the CEF lines due to static atomic displacements
[41]. Since the CEF splitting does not change and the crystal lattice parameters grow essentially,
in terms of the PC model this would imply a disorder-induced increase of the charge in the
CuO2 planes. Such a conclusion disagrees with other experimental data [41].
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Since the experimental results strongly suggest that the CEF spectrum in Er-‘123’ is
determined by charge states in the CuO2 planes, it seems reasonable to directly relate the
variation of the charge state within the CuO2 planes due to hole doping with the observed
behaviour of the CEF parameters. The model described in the next section was developed to
solve this problem.

3. Model of extended planar charge structure

It is common in solid-state physics to describe crystalline electric field effects due to point
charges by parameters of the so-called Stevens Hamiltonian (SH) [33, 34, 42]. However, the
form of the SH is not restricted by the point character of the charges. Therefore, the general
method to calculate the SH coefficients [33] can be adapted for any charge geometry, e.g. for
a specific charge distribution uniformly extended in a certain direction of the crystal lattice.

Figure 3. Schematic view of charge structure described in the text.(x̃, ỹ, z̃) is the local coordinate
system centred at the rare-earth position, while the system (x, y, z) is related to the crystal lattice.
Shadowed tapes in the planesz = ±H show the charged area. Bold lines aty = ±L are charged
filaments.T andW denote tape period and width, respectively.

We assume the charge array to have a sufficiently high symmetry (at least orthorhombic)
and consider local coordinate system (x̃, ỹ, z̃) with the origin at the rare-earth ion and the
electric charges located within two parallel planes atz̃ = ±H (figure 3). The charge density
uniformly extended in thẽx-direction is described by functionf (L) whereL is the distance
in the ỹ-direction between thẽz-axis and a particular charged area.

Let us first consider the electrostatic potential generated by an infinite uniformly charged
filament elongated in thẽx-direction. The perturbing crystalline potential of the filament acting
on anf electron of the rare-earth ion at a point (x̃, ỹ, z̃) is:

U(x̃, ỹ, z̃) = U(x̃, ỹ) = ξ ln
H 2 +L2

(H − z̃)2 + (L− ỹ)2 (2)
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whereξ is the linear charge density. Taking into account that due to smallf -shell radius|ỹ|;
|z̃| �

√
L2 +H 2 and introducing the notations:

α = ỹ√
L2 +H 2

β = z̃√
L2 +H 2

(3)

equation (2) can be presented as an expansion:

U(x̃, ỹ) = ξ
∑
p,q

Fpqα
pβq. (4)

Owing to the selection rules for the matrix elements [33] only the terms of expansion (4) with
p + q = 2, 4 and 6 contribute to the SH.

The potential due to a family of similar parallel filaments is given by the sum of individual
contributions. Since we assume either tetragonal or orthorhombic symmetry, for each pair
of symmetrical filaments located at (Li,H ) and (−Li,H ), i = 1, 2, 3, . . . , N (figure 3) the
terms in whichα andβ occur to an odd power cancel in the sum. As a result, the relevant part
of the electric potential generated by the pair of the uniformly charged parallel filaments is†:

U(ỹ, z̃) = U2U(ỹ, z̃) +U4(ỹ, z̃) +U6(ỹ, z̃)

U2(ỹ, z̃) = 2ξg2(L,H){z̃− ỹ2}
U4(ỹ, z̃) = 2ξg4(L,H){ỹ4 − 6ỹ2z̃2 + z̃4}
U6(ỹ, z̃) = 2ξg6(L,H){(z̃6− ỹ6)− 15ỹ2z̃2(z̃2 − ỹ2)}

(5)

where

g2(L,H) = (H 2 − L2/(H 2 +L2)2)

g4(L,H) = 1
2(H

4 − 6H 2L2 +L4)/(H 2 +L2)4 (6)

g6(L,H) = 1
3{(H 6− L6)− 15H 2L2(H 2 − L2)}/(H 2 +L2)6.

Factorsg2, g4, g6 describe the contribution from a single filament. The coefficient 2 stands in
equation (5) to emphasize that the field in question is generated by the pair of filaments. For
the system of four filaments located at (L,H ), (−L,H ), (L,−H ), (−L,−H ), respectively,
the coefficient 2 in (5) is replaced by a factor of 4. In the following we will use the notation
coordination number Kfor this numerical factor. For the array ofKN filaments:

U2(ỹ, z̃) = KG2{z̃2 − ỹ2}
U4(ỹ, z̃) = KG4{ỹ4 − 6ỹ2z̃2 + z̃4} (7)

U6(ỹ, z̃) = KG6{z̃6− ỹ6− 15ỹ2z̃2(z̃2 − ỹ2)}
where

Gn =
N∑
i=1

gin(Li,H) n = 2, 4, 6. (8)

In spherical coordinates equations (5)–(8) transform to:

U(ỹ, z̃) =
∑
n,m

Ãmn r
nYmn (ϑ̃, ϕ̃) n = 2, 4, 6;m = 0,±2,±4, . . .±n (9)

where coefficients̃Amn are as follows:

Ã0
2 = KG22

(
π

5

)1/2

Ã0
6 = KG62

(
π

13

)1/2

† Naturally, the same result occurs for the pair located at(L,H), (L,−H).
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Ã±2
2 = KG2

(
π

15

)1/2

Ã±2
6 = KG615

(
2π

2730

)1/2

Ã0
4 = KG4

2

3
(π)1/2 Ã±4

6 = KG6
1

7

(
14π

13

)1/2

(10)

Ã±2
4 = KG4

2

3

(
2π

5

)1/2

Ã±6
6 = KG6

1

231

(
231π

13

)1/2

Ã±4
4 = KG4

1

3

(
2π

35

)1/2

.

For the spherical harmonicsYmn we use the notations as defined by Hutchings [33].
In the coordinate system(x, y, z) related to the crystallographic axes of the lattice

(figure 3), from equation (9) we obtain:

U(r, ϑ, ϕ) =
∑
n,m

Amn r
nYmn (ϑ, ϕ) =

∑
n,m

Ãmn e−im1rnYmn (ϑ, ϕ) (11)

where the coefficients̃Amn are calculated with equations (10) in the local coordinate system
(x̃, ỹ, z̃). 1 is the azimuth angle between the coordinate systems. At1 6= (0, π/2) the
coefficientsAmn have imaginary parts.

Following the standard procedure [33, 34], the crystal-field Hamiltonian

Ĥcf = −|e|
∑
i

Û (xi, yi, zi)

can be written in the form of operator equivalents:

Ĥcf =
∑
n

∑
m>0

∑
α

BαnmÔ
α
nm α = 0, c, s, n = 2, 4, 6; m 6 n (12)

whereÔα
nm are the operator equivalents introduced by Stevens [34] and

Bαnm = −|e|γ αnmknm2n〈rn〉 (13)

are the CEF parameters.2n are the reduced matrix elements listed in [33].〈rn〉 is thenth
moment of the radial distribution of the 4f electrons [43]. The matrix of geometrical factors
γ αnm for a series of parallel filaments is determined as follows:

γ 0
n = Ã0

n γ cnm =
√

2Ãmn cos(m1) γ snm =
√

2Ãmn sin(m1). (14)

Taking into account equations (10), (13) and (14) we can write now explicit formulae for
the parameters of the crystalline field generated by the array of infinite filaments (figure 3):

B20 = 1
2b2 B60 = 1

16b6

Bc22 = 1
2 cos(21)b2 Bc62 = 15

32 cos(21)b6

Bs22 = 1
2 sin(21)b2 Bs62 = 15

32 sin(21)b6

B40 = 1
8b4 Bc64 = 3

16 cos(41)b6 (15)

Bc42 = 1
2 cos(21)b4 Bs64 = 3

16 sin(41)b6

Bs42 = 1
2 sin(21)b4 Bc66 = 1

32 cos(61)b6

Bc44 = 1
8 cos(41)b4 Bs66 = 1

32 sin(61)b6

Bs44 = 1
8 sin(41)b4

bn = −K|e|Gn2n〈rn〉 n = 2, 4, 6 (16)

whereGn are determined by equations (8).
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Forα = (0, c) one can use the Stevens operator equivalents listed in [33]. Expressions for
the operators withα = s may be derived using, e.g. the following procedure. Let us take into
account that spherical harmonicsYnn ;Yn−1

n ; . . . ;Y−nn themselves form a full set of irreducible
tensor operators. Thus, according to Wigner–Eckart theorem combinations

∑
i riY

m
n can be

substituted by a set of the equivalent tensor operators of the same rank:∑
i

rni Y
m
n (ϑi, ϕi) ≡ 2n〈rn〉Ŵm

n . (17)

Using the algorithm given in [44], one can choose an operator proportional toĴ n+ as the
equivalent tensor operator̂Wn

n . Other operators of a full set can be obtained using the following
recurrent formula:

[Ĵ−; Ŵm
n ] =

√
n(n + 1)−m(m + 1)Ŵm−1

n . (18)

Introducing the definitionŴ n
n = (knm/

√
2)Ĵ n+ , one obtains the expressions for the diagonal

operator equivalents:

Ôs
22 =

1

2i
{Ĵ 2

+ − Ĵ 2
−} Ôs

44 =
1

2i
{Ĵ 4

+ − Ĵ 4
−} Ôs

66 =
1

2i
{Ĵ 6

+ − Ĵ 6
−}. (19)

For the off-diagonal operators the calculation yields:

Ôs
42 =

1

2i
{Ĵ 2

+ (7Ĵ
2
z + 14Ĵz − J (J + 1) + 9)− Ĵ 2

−(7Ĵ
2
z − 14Ĵz − J (J + 1) + 9)}

Ôs
62 =

1

2i
{Ĵ 2

+ (33Ĵ 4
z + 132Ĵ 3

z − 18J (J + 1)Ĵ 2
z + 273Ĵ 2

z − 36J (J + 1)Ĵz + 282Ĵz

+J 2(J + 1)2 − 26J (J + 1) + 120)− Ĵ 2
−(33Ĵ 4

z − 132Ĵ 3
z − 18J (J + 1)Ĵ 2

z (20)

+273Ĵ 2
z + 36J (J + 1)Ĵz − 282Ĵz + J 2(J + 1)2 − 26J (J + 1) + 120)}

Ôs
64 =

1

2i
{Ĵ 4

+ (11Ĵ 2
z + 44Ĵz − J (J + 1) + 50)− Ĵ 4

−(11Ĵ 2
z − 44Ĵz − J (J + 1) + 50)}.

Equations (19) and (20) are symmetrical with respect to the permutationŴm
n → −Ŵ−mn .

Replacing the differences in these equations by corresponding sums and introducing the factors
1/2 instead of 1/2i one immediately obtains the expressions for the operatorsÔc

nm which
coincide exactly with those from [33]. Thus, a full set of Stevens operators for alln andm is
determined.

Equations (15) show that the specific ‘filament-like’ charge symmetry leads to the rigid
relations between the CEF parameters of the same order independently of other details of
the charge distribution. Indeed, derived expressions can easily be generalized for any two
or three dimensional charge distribution, which is constant in a certain direction and obeys
the symmetryf (L) = f (−L)†. In the two-dimensional case the linear charge densityξ in
equation (5) must be replaced byf (L) dL, so that the crystal-field potential of such a charged
plane at a point(x̃, ỹ, z̃) is determined by equations (7) but coefficientsGn are as follows:

Gn = Gn(H) =
∫ ∞

0
dLf (L)gn(L,H) = Cn

∫ ∞
0

dλf (Hλ)χn(λ) n = 2, 4, 6 (21)

C2 = 1

H
C4 = 1

2H 3
C6 = 1

3H 5
(22)

χ2(λ) = 1− λ2

(1 +λ2)2
χ4(λ) = 1− 6λ2 + λ4

(1 +λ2)4

χ6(λ) = 1− λ6− 15λ2(1− λ2)

(1 +λ2)6
. (23)

† Actually the distribution functionf (L) is determined up to any additive constantf (L) + C, since the uniformly
charged infinite plane (f (L) = const at 06 L <∞) gives zero electrostatic potential at any point.
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The dimensionless variableλ = L/H is used for convenience. The functionsχn(λ) act as
weighting factors determining a relative contribution of the ‘individual filament’ located at
L = Hλ to the crystal-field potential.χn(λ) are oscillating functions, both the ‘oscillation
frequency’ and the damping rate being different for different orders.

For applications it is useful to consider a particular case of a tape-like charge distribution
given by a series ofKN rectangular ‘impulses’ with constant charge densityQi for each
impulse (figure 3), i.e.:

f (L) = Qi for Li 6 L 6 Li +Wi i = 1, 2, . . . , N

f (L) = 0 forLi +Wi < L < Li+1

whereLi is the y-coordinate of theith ‘impulse’ front andWi is its width. In this case
equation (21) transforms into:

Gn =
N∑
i=1

Gi
n G(i)

n = QiCn{νn(βi)− νn(αi)} (24)

whereCn are determined by equation (22) and

ν2(λ) = λ

1 +λ2
ν4(λ) = λ(3− λ2)

3(1 +λ2)3
ν6(λ) = λ(5− 10λ2 + λ4)

5(1 +λ2)5
(25)

λ = {α, β} αi = Li

H
βi = Li +Wi

H

α andβ being the values of variableλ corresponding to the impulse edges. Equations (15),
(16), (24) and (25) determine the crystal-field parametersBnm for an array ofKN charged
tapes. For the periodic array of equal tapes the values of variableλ for the tape edges are:

αi = iT − (T +W)/2

H
βi = iT − (T −W)/2

H
(26)

whereT andW are the period and width, respectively, of the charged tape with constant charge
Q (positive for holes and negative for electrons, in units of|e| Å−2 wheree is the electron
charge). Equations (16), (24) and (26) lead to the following relations for the parametersbn (in
eV):

b2 = −14.4× 4×Q 〈r
2〉22

H

[ N∑
i=1

{ν2(βi)− ν2(αi)}
]

b4 = −14.4× 4×Q 〈r
4〉24

2H 3

[ N∑
i=1

{ν4(βi)− ν4(αi)}
]

(27)

b6 = −14.4× 4×Q 〈r
6〉26

3H 5

[ N∑
i=1

{ν6(βi)− ν6(αi)}
]
.

Hereνn(λ) are given by equations (25), coordination numberK = 4 is taken into account
and all lengths are in angströms. The crystal-field parametersBnm can be calculated with
equations (15). Figure 4 represents a typical behaviour of the CEF parameters for positive
charge of the tapes. Note that we consider the case of figure 3, i.e. there is no positively
charged area exactly above/below the rare-earth position. For the small width (T/W � 1)
the contribution to the second-order CEF parameters (they are equal for1 = 0) is positive at
L/H > 1 and decreases with increase ofL/H . As soon asT/W decreases (wide tapes) the
contributions coming from the first members of a series become negative. The change of the
sign results from the strict requirement to obey an asymptotic behaviourB20→ 0 atN →∞
in the limitW → T . ForL/H > 4 the partial contribution toB2m is a monotonic function of
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T/W . The fourth-order parameters show non-monotonic behaviour as a function ofT/W at
smallL/H with a maximum atT/W ≈ 1.5. B6m have a maximum atT/W ≈ 1.3 but they
are negative for narrow tapes. The contributions to bothB4m andB6m vanish atL/H > 3.
For a negative charge of tapes allBnm in figure 4 have the opposite sign. Since the solution of
equations (15) and (27) must be invariant with respect to any additive constant background, the
behaviour of CEF parameters in figure 4 corresponds also to a sequence of negatively charged
tapes with the same periodT , width (T −W ), and shifted by(T −W)/2 along they-axis with
respect to the point (x, 0, H ). Therefore, to obtain a positive contribution toB20 for an infinite
crystal doped with holes one has to consider the case of figure 3.

To take into account a finite length of charged tapes let us consider the expressions for the
crystal-field parametersBnm in the point-charge approximation. For example (for more details
see [33], p 241),

B20 = −|e|1
4
22〈r2〉

∑
j

qj
3Z2

j − R2
j

R5
j

Bc22 = −|e|
3

4
22〈r2〉

∑
j

qj
X2
j − Y 2

j

R5
j

(28)

Bs22 = −|e|
3

4
22〈r2〉

∑
j

qj
2XjYj
R5
j

where the summation is over ligand charges. Obviously, the second-order CEF parameters
require a maximal correction, while for the higher orders it can safely be neglected. For the
filament charge structure of figure 3 (angle1 = 0) substitutionqj → ξ dx and transformation
of equations (28) to integral yields:

B20 = −|e|ξ22〈r2〉1
2

sinϕ0

(H 2 +L2)2
{(H 2 − L2) +H 2 cos2 ϕ0}

Bc22 = −|e|ξ22〈r2〉1
2

sinϕ0

L2 +H 2

{
sin2 ϕ0 − L2

L2 +H 2
(3− sin2 ϕ0)

}
(29)

ϕ0 = arctan
D√

H 2 +L2

whereD is the filament half-length. For an infinite filamentϕ0 = π/2. If D � (H 2 +L2)1/2,
expansion of equations (29) using(H 2 +L2)1/2/D as a small parameter leads to the following
relations:

B20 = B20(∞)
{

1− 1

3

H 2 +L2

L2 −H 2

H 2 +L2

D2

}
Bc22 = Bc22(∞)

{
1 +

3

2

H 2 +L2

L2 −H 2

H 2 +L2

D2

} (30)

where the sign∞ stands for an infinite filament length. Equations (30) show that atL = 0
the correction turns out to be less than 1% if the ratioD/H > 10. AtL/H ≈ 5 the same is
true forD/H > 50 but in this case the absolute contribution to the second-order parameters
becomes less important (see figure 4). We conclude therefore that atD/H > 10 the formulae
derived for an infinite length of charge structure can be applied for a finite tape length.

4. Doping dependence of the CEF in ErBa2Cu3Ox and HoBa2Cu3Ox

In order to apply the model of the extended planar charge structure to the Er-‘123’ copper oxide
we proceed as follows. Let us assume that all nine CEF parameters are known for the undoped
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Figure 4. Dependence of the (a) second-, (b) fourth- and (c) sixth-order CEF parametersBn0 on
variableλ calculated with equations (15) and (27) for the tape charged structure (figure 3). The
values ofλ correspond to the centre of the tape,H = 1.4 Å, n = +0.0087|e| Å−2.

sample from the experiment [31] and calculate their variation due to the hole doping in terms
of our model. We consider the simplest case of charge geometry given by the periodic array of
equal charged tapes with coordination number 4 (equations (27)). The separation between the
rare-earth site and the CuO2 planesH = (z − 0.5)c was calculated for each oxygen content
using the structural data from [31] (c is the crystal lattice parameter, andz is thez-coordinate of
Cu(2) sites). Indeed, there is no great choice forT . The period should coincide with the crystal
lattice parameter along theab-plane since the experiment shows sharp CEF transitions without
any substructure for the sample withx = 6.98. We neglected the variation of the in-plane
lattice parameters for ErBa2Cu3Ox with x and fixed the period of the tapes atT = 3.85 Å (the
mean value of the in-plane lattice parameters). Since the experiment reveals all the leading
CEF parameters to increase due to the hole doping, positively charged tapes cannot be set
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Figure 5. (a)–(g) Doping dependence of the CEF parameters for ErBa2Cu3Ox . (h) Hole
concentrationn as a function of oxygen contentx for ErBa2Cu3Ox derived to describe the variation
of the CEF parameters in terms of equations (27). Experimental values ofBnm are taken from [31].
Notations ‘model’ and ‘small cluster’ correspond to the case ofN →∞ (an infinite biplane) and
N = 3, respectively. Model parametersW andQ for N →∞ are given in table 2.W = 1.73 Å
for N = 3. Notation ‘superpos’ corresponds to the weighted values ofn andBnm calculated with
equations (31) and (32), respectively.

above/below the rare-earth site (see section 3). This means that the tapes can be directed along
thea- or b-direction but never along (0,±1,±1), i.e. the angle1 = 0. Therefore, there are
only two model parametersW < T andQ to be found from a comparison with the experiment.
Following [39], corrections for thenth moments of the radial distribution of the 4f electrons
were taken into account by replacing〈rn〉(1− σn)/τn for 〈rn〉 in equations (27), whereσn and
τn are parameters which depend only on the number of 4f electrons of the R ion.

Figure 5 shows the result of fitting in the limit of an infinite crystal,N → ∞. Only a
single biplane is considered. The values ofW andQ are given in table 2.n in table 2 is
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Figure 5. (Continued)

the hole concentration per CuO2 block, calculated asn = (Q)× (lattice parameter along the
tape direction) × (W). We conclude thus that (i) all the leading CEF parameters are found
to be well described by the suggested model. (ii) The hole concentrationn ≈ 0.14(|e|/Cu),
required to describe variation of the CEF parameters going fromx = 6 to x = 7, is in
excellent agreement with the previous CEF analysis in terms of equation (1) [31] and other
experiments [37]. (iii) The model describes reasonably well not only the leading ‘tetragonal’
CEF parameters, but provides also a good approximation for the ‘orthorhombic’ parameters,
with the exception of the sixth-order ones. However, the experimental uncertainty for these
parameters is rather large. Note, that in the case of a charge net (tapes along thea- andb-
directions of the lattice) the resulting CEF parametersBnm should be calculated as a sum of two
contributionsbn(1)with the angle1 = 0 andπ/2, respectively. As a result the orthorhombic
parameters decrease. For example, they vanish for the tetragonal tape lattice (as they should
due to charge symmetry).
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Table 2. CEF parametersBnm (in meV) for ErBa2Cu3Ox calculated with equations (27). The
values ofBnm for the undoped sample are taken from [31] forx = 6.09. An infinite CuO2 biplane
around the Er3+ ion is considered.

(n,m) x = 6.09 x = 6.34 x = 6.45 x = 6.53 x = 6.78 x = 6.91 x = 6.98

(2, 0) 6.3 7.50 8.87 9.43 11.97 13.02 14.31
(2, 2) 0 1.20 2.57 3.13 5.67 6.72 8.01
(4.0) −33.61 −33.43 −33.23 −33.15 −32.77 −32.62 −32.44
(4, 2) 0 0.71 1.52 1.85 3.35 3.96 4.70
(4.4) 156.31 156.49 156.69 156.77 157.15 157.30 157.48
(6, 0) 3.57 3.59 3.62 3.63 3.67 3.69 3.71
(6, 2) 0 0.17 0.36 0.43 0.79 0.93 1.08
(6, 4) 104.47 104.54 104.61 104.64 104.78 104.84 104.90
(6, 6) 0 0.011 0.023 0.029 0.052 0.062 0.072
W (Å) 2.3 2.3 2.3 2.3 2.3 2.28
Q 0.0022 0.0048 0.006 0.011 0.0134 0.0159
n 0.020 0.043 0.053 0.097 0.119 0.140

To check the validity of the model several tests have been performed. First, it should be
emphasized that the value ofn is almost insensitive to the parametersW andQ. The uncertainty
in the determination of these parameters from the fit can be estimated as±5%. IfW decreases,
Q should be increased to achieve an initial convergence of the fit to the experimental values, and
vice versa. Hence, in terms of the simplified charge geometry the width of tapes is unchanged
under doping. Also, this simplification could explain why the model does not reproduce the
behaviour of the sixth-order ‘orthorhombic’ parameters (m = 2, 6). In principle, corrections
can be introduced to take into account the ‘background’ crystal-field parameters related to
the ligand ions. This background varies with the oxygen concentration due to the structural
modification. However, these corrections do not exceed±1% for the ‘tetragonal’ fourth- and
sixth-order parameters calculated in the point charge approximation for the nearest-neighbour
oxygen shell with the structural parameters from [31].

The second test is to take into account the neighbouring CuO2 biplanes. This contribution
toB2m is negative for smallL/H and strongly suppressed by the higher absolute value ofH .
As a result of these two circumstances the correction toB2m is as small as 2 to 3%. The fourth-
and sixth-order parameters are absolutely insensitive to the neighbouring planes.

The size of a cluster is the third important factor. Until now we have discussed an infinite
cluster. However, the result does not change significantly if only a narrow cluster (along the
y-axis) is considered. For example, forN = 3 (i.e. the width of the cluster along they-axis
is about 20 Å) the best solution is found atW = 1.73 Å givingQ = 0.0249 (|e| Å−2), i.e.
n = 0.17 (|e|/Cu) forx = 6.98 (figure 5). Agreement with the experiment is even better than
in the case of an infinite cluster. Again, the nearest CuO2 biplanes have negligible influence
on all CEF parameters. More essential correction for the second-order parameters results from
the finite length of the tapes along thex-axis. According to equation (30), if the tape length is
more than 30–40 Å, these corrections do not exceed a few per cent.

The last test is related to the direct effect of the chain oxygen. As we saw above
the influence of the chain oxygen is negligible in terms of the point-charge model. Our
model provides an extra possibility to check whether the oxygen incorporation into the chain
position has only a small effect on the CEF interaction at the rare-earth site. Indeed, the
electrostatic potential due to a charged filament decreases slowly with distance as compared
to the point charges (logarithmic decay instead of 1/r). This means that the effect of the
chain oxygen calculated in terms of our model by far exceeds the result expected for a point
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Figure 6. Doping dependence of the CEF parameters (a)B20 and (b)B22 for HoBa2Cu3Ox .
Experimental values are taken from [35]. Model parametersW andQ(x) (and, hence, hole
concentrationn) are the same as in the case of Er-‘123’ in the limit ofN →∞.

charge. TakingH = c/2, wherec is the lattice parameter, and assumingW = 2.3 Å we
obtain corrections of the order of 2.5% forB2m and less than 0.1% forB4m andB6m from the
requirementn = −2 (|e|/cell) (i.e. chain oxygen is allowed to be spread along thea-axis; the
value ofW is the same as in table 2 for clarity).

In the model of charged tapes the ‘orthorhombic’ CEF parameters naturally arise as a direct
consequence of the orthorhombic charge structure in the CuO2 planes. However, we cannot
state that this result is in favour of the model since in the case of Er-‘123’ the ‘orthorhombic’
parameters do not play an important role in the determination of the CEF spectra. They are
additional fitting parameters used to improve fitting of the calculated spectra to the measured
ones. In HoBa2Cu3Ox the CEF spectrum turns out to be very sensitive to theB22 parameter
[35]. The reason is that the5I8 ground state multiplet of Ho3+ is split into nine singlets and four
doublets by the tetragonal crystal field atx = 6 (for Er3+ all CEF levels are Kramers doublets).
The transition into the orthorhombic phase causes an additional splitting of the level scheme
so that all CEF levels become singlets. Evidently, not only the energy levels but also the
transition intensities depend on an orthorhombic distortion. As a result, in order to properly fit
the observed CEF spectra for differentx it is necessary to accurately adjust theB22 parameter as
well. Figure 6 shows that the model under consideration reproduces the experimental behaviour
of the second-order CEF parameters for Ho-‘123’ rather well. It should be emphasized that
the model results in figure 6 represent not a fitting but straightforward recalculation of the
data obtained for Er (table 2) for the case of Ho. We conclude that equations (27) are able to
describe the doping dependence of the CEF spectra in RBa2Cu3Ox with R = Er, Ho, i.e. the
behaviour of ninea priori independent CEF parameters for each system, using only two fitting
parameters, the values of which are equal for both compounds.

Figure 5 shows that thex-dependence of the CEF parameters follows thex-dependence of
the hole concentration in the CuO2 planes. Our model is able to explain why these dependences
are nonlinear. We demonstrated above that the model allows us to consider small clusters
formed by the CuO2 biplane with a typical size of the order of a few lattice constants. This
means that any doped hole can form a short charged tape in its local surroundings. This leads to
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the corresponding variation of all the CEF parameters described by equations (27). Following
[32], let us assume that only three types of local regions are allowed to exist, namely, undoped
(this corresponds tox = 6.0), intermediately doped (x = 6.5) and highly doped (x = 6.98). In
the ideal case of homogeneous charge distribution the hole concentrationn is proportional tox,
so thatn = 0, 0.07 and 0.14 (|e|/Cu) forx = 6.09, 6.5 and 7.0, respectively. The averaged hole
concentration〈n(x)〉, given in table 2 for the integrated CEF spectra, obeys a simple law driven
by statistical probabilities to find the corresponding local arrangements of the rare-earth ion.
These probabilitiesPi (i = 0, 1, 2, 3, 4) were introduced by P Allenspachet al [45] to describe
the relative intensities of the spectral components of the CEF spectra in high-Tc copper-oxides.
Later they were comprehensively used by J Mesotet al [32] and W Henggeleret al [46]
to point out a percolative origin of the insulator–superconductor transition in Er-‘123’ and
Pr2−xCexCuO4−δ, respectively. Using the definition of [32], the averaged hole concentration
〈n(x)〉 for ErBa2Cu3Ox as a function ofx can be written as:

〈n(x)〉 = n(x = 6.5)[(P2(x) + P3(x)] + n(x = 7.0)P4(x). (31)

The weighted CEF parameters which determine the integrated CEF spectrum are as follows:

Bobsnm (x) = Bnm[n(6.0)][P0(x) + P1(x)] + Bnm[n(6.5)][P2(x) + P3(x)] + Bnm[n(7.0)P4(x)].

(32)

Indeed, the observed CEF parameters follow equation (32) rather well (figures 5(a) and
5(c)). Figure 5(h) shows the averaged hole concentration〈n(x)〉 calculated according to
equation (31) which clearly explains identical (and nonlinear)x-dependence of the CEF
parameters (figure 1(b)). Therefore, not only a separation of the CEF spectra into different
local components but thex-dependence of the CEF parameters themselves gives clear evidence
for the formation of clusters which make the system inhomogeneous.

5. Discussion

The model of extended charges allows us to directly relate the variation of the CEF interaction
at the rare-earth site in ‘123’ structure with the charges appearing in the CuO2 planes due
to doping. Note that we considered the simplest charge density distribution in the planes
which is approximated by a step function. In principle, any more complicated distributions
of the same symmetry may be taken into account. However, even the simplest distribution
yields a reasonable result. The hole concentration derived from our calculations corresponds
surprisingly well to the results of other experiments and theoretical estimations. It is also
important that the model emphasizes orthorhombic distortions (i.e. the elongation of the CuO4

square along one of the planar Cu–O bonds) as an intrinsic feature of the doping process which,
as seen from the charge geometry, is accompanied by charge order in the CuO2 planes.

In fact, the orthorhombic tape structure means that the O(2) and O(3) sites in the CuO2

planes turn out to be non-equivalent with respect to the charge transfer under doping. This
type of order may be called ‘Z[O(2)] 6= Z[O(3)]’. In other words, the holes introduced by
doping with oxygen go preferably to one type of plane oxygen site, i.e. O(2) (along thea- axis
of the crystal lattice) or O(3) (along theb-axis). Our model cannot distinguish between them.
We may only assert that charged tapes are directed either along thea- orb-axis but never along
the (0,±1,±1) direction (see section 4).

If orthorhombic distortions result from this type of charge arrangement in a unit cell one
can assume the tetragonal–orthorhombic phase transition in ‘123’ compounds to be driven by
the same mechanism. The chain oxygen ordering along theb-axis of the lattice seems to be a
consequence of this electronic transition. In its turn, the oxygen arrangement helps to stabilize
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the long-range orthorhombic distortions introduced by the doped holes and leads to a three-
dimensional structural phase transition, which, in this form, is typical of the ‘123’-systems
only. At the same time the local distortions of the Cu–O polyhedra are thought to be a general
feature of the doping process in all cuprates [23, 24, 26–29, 46, 47]. The model developed to
explain thex-dependence of the CEF parameters in RBa2Cu3Ox allows us to demonstrate a
relation between the structural distortions due to the doping and the tetragonal–orthorhombic
phase transition in terms of equation (32). According to [32] superconductivity atTc = 60 K
in ‘123’ compounds occurs at the two-dimensional percolation thresholdP2 + P3 = 50%.
If both transitions, structural and superconducting, have the same triggering mechanism, the
former is expected to occur at the three-dimensional percolation threshold, say, between 20
and 30% [48]. Taking the same probabilityP2 +P3 as a measure of the volume fraction of the
orthorhombically distorted (i.e. intermediately doped) regions we conclude that the structural
phase transition occurs before the superconducting one at 6.2 < x < 6.3, in agreement with
the experiment [47].

Evidently, the periodic array of charge tapes under consideration has the same geometry
as stripes which form antiphase domain walls between antiferromagnetically ordered spins in
the CuO2 planes (e.g., compare figure 3 of the present paper with figure 1 of [27]). More
important, our model of the doping dependence of the crystal-field effects emphasizes the
same characteristic features of layered oxides as a model of the charged stripes, namely,
the real-space charge order in the CuO2 planes as well as distortions of the planar Cu–O
bonds due to doping. In addition, due to the local nature the CEF interaction displays the
phenomenon of ‘frustrated phase separation’ [30, 32]. This phenomenon was also observed
by other local probes such as Mössbauer [49], NMR [50] andµSR [51] experiments. Due
to these similarities it seems attractive to identify the charge tapes responsible for the doping
dependence of the CEF parameters with stripes. However, there are severe doubts that such
an identification is possible. (i) Our model emphasizes the ordered charge arrangement in
a unit cell. The width of charge tapesW ≈ a/2 (a is the in-plane lattice parameter) is by
order of magnitude less than the width of stripes which is about 15 Å [20, 22, 27–29]. In
terms of our model any attempt to extend stripe width up to a few lattice constants would
result in strong contradiction with the observed behaviour of the CEF parameters. It is not
straightforward to complicate the model taking into account, for example, influence of domain
walls. (ii) The phenomenon of ‘frustrated phase separation’ associated with a separation of the
CEF spectra into different local components can hardly be identified with the ordered charged
stripes. The former is associated with the occupation of the chain oxygen sites and is governed
by the statistical probabilities [32, 45]. (iii) The CEF interaction measured by inelastic neutron
scattering technique essentially ‘feels’ a static component of the charge potential associated
with the CuO2 planes. A dynamic component affects the width of the CEF excitations. It is
difficult to believe in the universal static character of stripes independently of doping level.
Although we doubt that direct identification of charged stripes and charge order of the type
‘Z[O(2)] 6= Z[O(3)]’ can be justified, both phenomena may be strictly tied. At the same time
other interpretations associated with generic properties of the doped 2D planes are not excluded.
The origin of the charge distribution within a unit cell may be related to an ordering of the type
CDW [10], Jahn–Teller polaron formation due to local distortions of the planar CuO4 cluster
[52], or to the properties of doped spin chains [11]. In any case, the model requires further
experimental verification. Measurements of the CEF spectra by inelastic neutron scattering at
temperatures well aboveTc, in the deeply overdoped regime as well as for the macroscopically
tetragonal high-Tc oxides (the rare-earth doped infinite-layer compounds seem to be good
candidates for this test) are expected to provide new insight into the underlying physics. All
these experiments are in progress.
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6. Conclusion

For the first time we present a new empirical approach to describe the doping dependence of the
crystal-field interaction in RBa2Cu3Ox (R = Er, Ho) superconductors in terms of the periodic
array of charged tapes in the CuO2 planes. The model is able to explain the variation of the
CEF parameters in Er- and Ho-based compounds with only two fitting parameters the values
of which are the same for both materials. The hole concentration in the CuO2 planes is derived
as a function of oxygen stoichiometry and found to be in agreement with the expectations.
It is shown that not only the fine structure of the CEF spectra but also thex-dependence of
the crystal-field parameters themselves gives clear evidence for the formation of clusters in
RBa2Cu3Ox which make the system inhomogeneous. The geometry of the charge distribution
required to obtain these results provides evidence for charge order in the CuO2 planes of the type
‘Z[O(2)] 6= Z[O(3)]’ whereZ is the effective charge of the in-plane oxygen sites. This order
is assumed to result from the holes which are injected into the planes and preferably occupy
one sort of in-plane oxygen site, either O(2) or O(3). This causes orthorhombic distortions
of the tetragonal crystal structure of an undoped compound. When the volume fraction of
the orthorhombically distorted (i.e. intermediately doped) regions reaches the 3D percolation
threshold the structural phase transition occurs. For a critical volume fraction of 50% the
doped clusters form a 2D percolative network, and the system undergoes a transition from
the insulating to the metallic, i.e. superconducting, state [32]. Therefore, both the transitions
occurring in ‘123’ compounds due to oxygen intercalation seem to have the same triggering
mechanism related to the number of holes injected into the planes, the former being followed
by the latter, as expected from the dimension arguments. We suggest that the charge order of
the type ‘Z[O(2)] 6= Z[O(3)]’ cannot directly be associated with the stripe structure although
a relation between these phenomena is not excluded.
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